Gland Instance Segmentation by Deep Multichannel Side Supervision

نویسندگان

  • Yan Xu
  • Yang Li
  • Mingyuan Liu
  • Yipei Wang
  • Maode Lai
  • Eric I-Chao Chang
چکیده

In this paper, we propose a new image instance segmentation method that segments individual glands (instances) in colon histology images. This is a task called instance segmentation that has recently become increasingly important. The problem is challenging since not only do the glands need to be segmented from the complex background, they are also required to be individually identified. Here we leverage the idea of image-to-image prediction in recent deep learning by building a framework that automatically exploits and fuses complex multichannel information, regional and boundary patterns, with side supervision (deep supervision on side responses) in gland histology images. Our proposed system, deep multichannel side supervision (DMCS), alleviates heavy feature design due to the use of convolutional neural networks guided by side supervision. Compared to methods reported in the 2015 MICCAI Gland Segmentation Challenge, we observe state-of-the-art results based on a number of evaluation metrics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gland Instance Segmentation by Deep Multichannel Neural Networks

In this paper, we propose a new image instance segmentation method that segments individual glands (instances) in colon histology images. This is a task called instance segmentation that has recently become increasingly important. The problem is challenging since not only do the glands need to be segmented from the complex background, they are also required to be individually identified. Here w...

متن کامل

Learning to Cluster for Proposal-Free Instance Segmentation

This work proposed a novel learning objective to train a deep neural network to perform end-to-end image pixel clustering. We applied the approach to instance segmentation, which is at the intersection of image semantic segmentation and object detection. We utilize the most fundamental property of instance labeling – the pairwise relationship between pixels – as the supervision to formulate the...

متن کامل

Weakly Supervised Learning of Affordances

Localizing functional regions of objects or affordances is an important aspect of scene understanding. In this work, we cast the problem of affordance segmentation as that of semantic image segmentation. In order to explore various levels of supervision, we introduce a pixelannotated affordance dataset of 3090 images containing 9916 object instances with rich contextual information in terms of ...

متن کامل

Prostate segmentation and lesions classification in CT images using Mask R-CNN

Purpose: Non-cancerous prostate lesions such as prostate calcification, prostate enlargement, and prostate inflammation cause too many problems for men’s health. This research proposes a novel approach, a combination of image processing techniques and deep learning methods for classification and segmentation of the prostate in CT-scan images by considering the experienced physicians’ reports. ...

متن کامل

Fully Convolutional Multi-Class Multiple Instance Learning

Multiple instance learning (MIL) can reduce the need for costly annotation in tasks such as semantic segmentation by weakening the required degree of supervision. We propose a novel MIL formulation of multi-class semantic segmentation learning by a fully convolutional network. In this setting, we seek to learn a semantic segmentation model from just weak image-level labels. The model is trained...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016